Algorithm for Financial Derivatives Evaluation in Generalized Double-Heston Model

نویسندگان

  • Tiberiu Socaciu
  • Bogdan Pătruţ
چکیده

This paper shows how can be estimated the value of an option if we assume the doubleHeston model on a message-based architecture. For path trace simulation we will discretize continous model with an Euler division of time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Portfolio Optimization under Double Heston Duffie-Kan Model and the Price Calculation of the European Option

In this paper, we present a new version of the Double Heston model, where the mixed Duffie-Kan model is used to predict the volatility of the model instead of the CIR process. According to this model, we predict the stock price and calculate the European option price by using the Monte-Carlo method. Finally, by applying the proposed model, we find the optimal portfolio under the Cardinality Con...

متن کامل

On Pricing Barrier Options with Discrete Monitoring

This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in an asymptotic expansion approach. First, the paper derives an asymptotic expansion for generalized Wiener functionals. After it is appl...

متن کامل

A Componentwise Splitting Method for Pricing American Options under the Bates Model

A linear complementarity problem (LCP) is formulated for the price of American options under the Bates model which combines the Heston stochastic volatility model and the Merton jump-diffusion model. A finite difference discretization is described for the partial derivatives and a simple quadrature is used for the integral term due to jumps. A componentwise splitting method is generalized for t...

متن کامل

Multilevel Monte Carlo Quadrature of Discontinuous Payoffs in the Generalized Heston Model Using Malliavin Integration by Parts

In this manuscript, we establish an integration by parts formula for the quadrature of discontinuous payoffs in a multidimensional Heston model. For its derivation we use Malliavin calculus techniques and work under mild integrability conditions on the payoff and under the assumption of a strictly positive volatility. Since the integration by parts procedure smoothes the original functional, ou...

متن کامل

Asymptotic Analysis of Stock Price Densities and Implied Volatilities in Mixed Stochastic Models

In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin convolution of functions defined on (0,∞) and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-diffusion models and stochastic volatility models with jumps. We apply our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010